Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-[N^{\prime}-(4-Hydroxy-3-methoxybenzylidene)-hydrazinocarbonyl]-1H-1,2,4-triazole

Fu-You Pan* and Jian-Guo Yang

Department of Chemistry, Taizhou University, Taizhou 317000, People's Republic of China

Correspondence e-mail: panfy@tzc.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.140$
Data-to-parameter ratio $=12.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{3}$, was synthesized by the reaction of 3-(1 H$)$-1,2,4-triazole hydrazine with 4-hydroxy-3methoxybenzaldehyde in ethanol. In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \quad \mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are observed. An intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is also found.

Comment

Azole derivatives, such as derivatives of pyrazole, imidazole, triazole (including benzotriazole), tetrazole, indole etc. exhibit extensive biological activities. They have become a central focus in the study of agricultural chemicals, medicine, adjustment reagents for plant growth and so on (Ernest \& William, 1982). A Schiff base is a good type of biologically active substructure and a study of a type of triazole Schiff base has been reported (Sauter et al., 1991). The hydrazonecarbonyl grouping has also been shown to be bioactive (Zhi et al., 2003). In a search for more effective antibacterial medicines, we have synthesized the title compound, (I). We have already reported two structures of triazole compounds containing the hydrazonecarbonyl group (Yang \& Pan, 2004; Pan \& Yang, 2005).

(I)

In (I), there are two independent molecules in the asymmetric unit (Fig. 1). The methoxy groups at C9 and C20 are rotated slightly around the $\mathrm{C} 9-\mathrm{O} 2$ and $\mathrm{C} 20-\mathrm{O} 5$ bonds; the torsion angles $\mathrm{C} 11-\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10$ and $\mathrm{C} 22-\mathrm{O} 5-\mathrm{C} 20-\mathrm{C} 21$ are $-11.8(4)$ and $-6.8(0.4)^{\circ}$, respectively. The bond lengths and angles are unexceptional (Allen et al., 1987). Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are observed (Table 2), which result in seven-membered and five-membered hydrogen-bonded rings (Fig. 2). In addition, an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond forming a five-membered ring is observed.

Received 14 December 2004 Accepted 23 December 2004 Online 29 January 2005

Experimental

$1 H-1,2,4$-Triazol-3-ylhydrazine ($0.02 \mathrm{~mol}, 2.54 \mathrm{~g}$) was dissolved in 50 ml of anhydrous ethanol at room temperature. 4-Hydroxy-3methoxybenzaldehyde ($0.02 \mathrm{~mol}, 3.04 \mathrm{~g}$) was added and the mixture was refluxed for 2 h ; the precipitate was collected by filtration and washed with ethanol. The product was recrystallized from ethanol and dried under reduced pressure to give the title compound. The compound ($2.0 \mathrm{mmol}, 0.52 \mathrm{~g}$) was dissolved in 30 ml DMF and was kept at room temperature for 30 days. Brown spike-shaped single crystals formed; they were washed with distilled water.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{3}$
$M_{r}=261.25$
Triclinic, $P \overline{1}$
$a=4.473$ (1) \AA
$b=14.772(5) \AA$
$c=18.263$ (2) \AA
$\alpha=79.38(2)^{\circ}$
$\beta=88780(1)^{\circ}$
$\gamma=86.33$ (2) ${ }^{\circ}$
$V=1183.6(5) \AA^{3}$

$$
Z=4
$$

$D_{x}=1.466 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=9.8-14.8^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Spike, brown
$0.40 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART four-circle diffractometer
φ and ω scans
Absorption correction: multi-scan SADABS (Bruker, 2002)
$T_{\text {min }}=0.957, T_{\text {max }}=0.989$
4819 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0831 P)^{2}\right. \\
& \quad+0.0981 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}-0.33 \mathrm{e}^{-3} .
$$

4271 independent reflections
2357 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-5 \rightarrow 5$
$k=-17 \rightarrow 1$
$l=-21 \rightarrow 21$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.140$
$S=1.01$
4271 reflections
347 parameters
H-atom parameters constrained

Figure 1

The structure of the asymmetric unit of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Packing of (I), showing selected inter- and intramolecular hydrogen bonds as dashed lines. Some of the H atoms have been omitted for clarity. (Symmetry codes are as in Table 2.)

All H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $0.93-0.96 \AA(\mathrm{C}-\mathrm{H}), 0.86 \AA(\mathrm{~N}-$ H) and $0.82 \AA(\mathrm{O}-\mathrm{H})$, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT and SHELXTL (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (No.M203115).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

organic papers

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Ernest, H. \& William, J. H. (1982). GB Patent 2078212.
Pan, F. Y. \& Yang, J. G. (2005). Acta Cryst. E61, o63-o64.
Sauter, H., Zierke, T., Reuther, W., Baus, U., Lorenz, G., Ammermann, E. (1991). Eur. Patent 421227.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yang, J. G. \& Pan, F. Y. (2004). Acta Cryst. E60, o2342-o2344.
Zhi, J. F., Bin, Z., Su, H. W., Zheng, M. L. (2003). Chin. J. Appl. Chem. 20, 365367.

